Understand the Regulation of Learning and Memory Formation from a Molecular Prospective

BPJ_112_6.c1.inddWhen most people talk about calcium (Ca2+), they think about building bones and muscle contraction. In fact, calcium is also essential for learning and memory formation. Molecular basis for learning and memory formation has aroused attention since 1980s.  So what does calcium do with learning and memory formation? The calcium-modulating protein calmodulin (CaM) coordinates the activation of a family of Ca2+-regulated proteins, which are crucial for synaptic plasticity associated with learning and memory in neurons. These proteins include neurogranin (Ng) and CaM-dependent kinase II (CaMKII). In a resting cell, CaM is mostly reserved by Ng and free of Ca2+, whereas in a stimulated cell, CaM is able to bind Ca2+ and activate CaMII, which plays a pivotal role in learning and memory formation for both long-term potentiation and mechanisms for the modulation of synaptic efficacy.

The cover image for the March 28 issue of the Biophysical Journal shows the crystal structure of CaM-CaMKII peptide and the structure of CaM-Ng from coarse-grained molecular simulations. CaM molecules are ribbons in silver, calcium ions are represented by yellow beads, CaMKII peptide is in green surface representation, and Ng peptide is in red surface representation. One CaM-Ng peptide complex is near, where the Ng is aligned with a “pry” (pink); the other is far, indicating rich level of Ng. The images were rendered using the software Visual Molecular Dynamics developed by University of Illinois at Urbana-Champaign with the built-in Tachyon ray tracer. The illustration of a neuron in hippocampus is taken from Shelley Halpain, UC San Diego. Dendrites are green, dendritic spines red, and DNA (in cell nucleus) blue. The illustration of a human brain contains red dots to indicate active parts of the cerebral cortex.

Our computational study provides the very first detailed description at atomistic level ofhow binding of CaM with two distinct targets, Ng and CaMKII, influences the release of Ca2+ from CaM, as a molecular underpinning of CaM-dependent Ca2+ signaling in neurons. We believe this study bridges the molecular regulations in atomistic detail and the understanding of cellular process cascade of learning and memory formation.

– Pengzhi Zhang, Swarnendu Tripathi, Hoa Trinh, Margaret S. Cheung