Get to Know: Bert Tanner, BPS Early Careers Committee Chair

We recently spoke with BPS Early Careers Committee Chair Bert Tanner, Washington State University, about his research, his time on the committee, and the years he spent as a gymnast.

tanner-bertWhat is your current position & area of research?

Assistant Professor, Department of Integrative Physiology and Neuroscience, Washington State University

I study muscle biology and teach physiology to undergraduate, graduate, and veterinary students. Research studies within my laboratory focus on normal, mutated, and diseased proteins that influence muscle contraction. We often integrate mathematical modeling, computational simulations, biochemical assays, and biophysical system-analysis to investigate complex network behavior among muscle proteins. We use these findings to describe and illustrate molecular mechanisms of contraction that underlie muscle function at the cellular and tissue levels.

What drew you to a career as a biophysicist?

I studied Physics as an undergraduate student at University of Utah. The last couple years of my undergraduate studies I got the opportunity to further explore bioengineering and computer science, and I participated in a summer research experiences learning about computational biology, remote sensing, and environmental biophysics. Through these experiences, I became increasingly interested at using mathematics, physics, and computation to better understand and describe biological processes. Through a series of injuries, I started learning more about physiology and became increasingly curious about different applications where mathematical modeling could help illustrate complicated, dynamic processes at the molecular, cellular, and organismal levels.  This led me back to graduate school, where I ultimately began studying muscle biophysics.

What do you find unique or special about BPS? What have you enjoyed about serving on the Early Careers Committee?

I love the rigor, diversity, and plasticity of the Biophysical Society, as well as the annual Biophysical Society meeting.  I’ve been attending and presenting at the national meeting since 2004, and I am really impressed by the high-quality science and constructive engagement of many society members—many of whom have become great friends and colleagues over the years. I also really appreciate the strong commitment to training young scientists in a rigorous, difficult field that is demonstrated by the BPS and its engaged membership. I enjoy being a member of the Early Careers Committee because it is a platform that enables education and programming for early career biophysicists via the newsletters, society webpage and blog posts, and annual meeting events.  These early career biophysicists are among the best and the brightest minds in the world, and our committee feels it is critical to help them learn about the myriad career paths where their skills will make an impact: academia, industry, small business, national laboratories, science writing and education, public policy, etc.

Who do you admire and why?

I admire many people from many different walks of life, but I often think most of the people that have impacted my education in a positive way. This includes a handful of teachers from elementary, middle school, and high school, all of whom made a really big impact on my thinking and career choices. Just like the impact these teachers made on me, other teachers work tirelessly to educate students each day; the well-being of our society greatly benefits from their efforts.  A second tier of people that I really admire are the approachable, engaging, unselfish, and constructively-critical mentors or colleagues that I get to interact with each year.  These people inspire me to try and do my best each day, and to treat people kindly.


What do you like to do, aside from science?

I love the outdoors and to exercise. When I can pair these two up, it is even better.  My favorite hobby is skiing, just being out in the snow and gliding down the mountain, trail, or path is fantastic.  The past few years I’ve spent all my spare skiing-time on the ‘magic carpet’ teaching my son how to ski.  He is 5 now, and getting pretty good at the ‘blue squares’.  On our last ski day in Spring of 2016, my daughter (then about 18 months old) even skied by herself for about 60-100 feet.  She loves skiing and spent most of her first couple seasons skiing in a backpack on my back. I cannot wait to watch her keeping up with her big brother soon.

What is your favorite thing about living in Washington?

The diversity of the outdoor activities.  My family and I get to live in a small town and I get to work at a Pac-12 university with wonderful colleagues and great resources to pursue my research.  However, we are only 30 minutes to 2.5 hours away from world-class white water rivers, camping, hiking, backpacking, and pretty good skiing.  This accessibility to nature, and the diversity of options is really special to me and my family.

What is something BPS members would be surprised to learn about you?

I was a gymnast until age 18.  I loved it, but it took a lot of time and I decided not to pursue it as a collegiate athlete.  However, it was pretty fun watching some of the fellow gymnasts that I’d trained with, and competed against as I grew up, perform in the Olympics over the past 15-16 years.

Do you have a non-science-related recommendation you’d like to share (book, movie, TV show, etc.)?

The recent Zootopia movie has a classic and wonderfully painful scene with sloths running the DMV.  For a quick laugh (2-3 min segment) you should check it out on YouTube.


Get to Know: Paul Axelsen, BPS Treasurer

We recently spoke with Biophysical Society Treasurer Paul Axelsen, University of Pennsylvania, about who he admires, why he appreciates serving as treasurer, and what he loves about being a pilot.

Axelsen, Paul - PHOTOWhat is your current position & area of research?

I am in the Department of Pharmacology at Penn with secondary appointments in the Department of Biochemistry and Biophysics, and in the Department of Medicine.

Everyone in the lab, in some way, studies the problem of amyloidogenesis in Alzheimer’s disease, which we suspect may result from protein-lipid interactions rendered pathological by oxidative stress.

What drew you to a career as a biophysicist?

The enthusiasm of my pre-doctoral and postdoctoral mentors for the field!  Before I was in any position to judge for myself, they held up the Biophysical Society, its Journal, and its Annual Meeting as a model for how science should be done at the highest levels.

What do you find unique or special about BPS?  What have you enjoyed about serving as treasurer?

Without question, the answer to both questions is: the people involved in leadership.  Becoming involved in BPS committees and Council greatly expanded the number of people I knew outside my field, and broadened my perspective on science.

Who do you admire and why?

That generation of scientists – now largely gone – who stayed “hands-on” in the lab throughout their careers, who made their own reagents and instruments, and who can be credited with creating the modern popular expectation that basic science can solve practical problems.



The Wright Brothers Memorial in Kitty Hawk, North Carolina is visible on a hill behind the airstrip where the Wright brothers first flew. 112 years later, Paul made it there in about 2 hours from Philadelphia.


I hear you are a pilot. What made you want to fly? What do you love about it?

Powered flight is one of the greatest human inventions of the past few hundred years, and many aspects of flight just cannot be experienced by watching videos or even IMAX films.  It is also an outstanding example of how government, private enterprise, and individuals can organize to create an extraordinarily safe transportation system.  As with the BPS, it is an extraordinary privilege to be a part of such an organization.

What is something BPS members would be surprised to learn about you?

I vaguely recall having worked as a professional musician throughout most of the ‘70s.

Get to Know: Frances Separovic, BPS Secretary

We recently spoke with Biophysical Society Secretary Frances Separovic, University of Melbourne, Australia, about why she loves biophysics, what makes Australia unique, and her surprising life goal.

frances-headshotWhat is your current position & area of research?

I am professor and Head of the School of Chemistry at the University of Melbourne. My primary research area is membrane biophysics and biological solid-state NMR spectroscopy. Our lab studies how peptides and toxins get into cell membranes.

What drew you to a career as a biophysicist?

Working out how things work, and being able to do this at an atomistic level is thrilling.

What do you find unique or special about BPS? Why are you excited to serve as secretary?

The diversity of fields covered by our members and the pervasive enthusiasm for discovery. As secretary, I hope to raise awareness of how biophysics underlies our understanding of biological systems and welcome the opportunity to help bring together the global biophysics community.

Who do you admire  and why?

Richard Feynman, Marie Curie and Nelson Mandela come to mind – their passion, persistence and pursuit to resolve often conflicted principles.

What do you like to do, aside from science?

Travel – although it is usually associated with science. I enjoy reading novels, movies, plays, exhibitions and stand-up comedy.

What makes you most proud about living in Australia?

Its natural beauty, lifestyle, and multiculturalism. I immigrated to Australia as a child and was fortunate to grow up learning from different cultures.

What do you want scientists to know about biophysics/science research in Australia?

The Australian Society for Biophysics will celebrate its 40th Anniversary this year. Although small on a world scale, we kick above our weight and, although on the other side of the globe, we are well connected. We’re also proud of the Braggs who, a hundred years ago, were awarded the Nobel Prize in Physics for X-ray crystallography.


The Nullarbor Plain, spanning the border between South Australia and Western Australia

What is something BPS members would be surprised to learn about you?

I love to drive long distances while listening to loud music – my ambition is to drive a road train [a truck pulling multiple trailers] across the Nullarbor.

Egelman’s Culinary Lab: Grilled Chicken Thighs

If you read the profile of BPS President Edward Egelman in the BPS Newsletter earlier this year, you know that in his spare time, he is an avid cook.  We have asked him to share a recipe with readers here.  In keeping with the end of summer in the US, Egelman has chosen to share a grilled dish.

Grill-clipartAfter being asked to contribute a recipe to this blog, I realized how hard it is to choose one particular dish when I am constantly experimenting with food (at home, that is, and not in the lab!). My son, a computer scientist at Berkeley, introduced me to xanthum gum, which is now a staple in modernist cuisine (or molecular gastronomy). It turns out that this polysaccharide has been mainly used in industrial applications, such as thickening mud for oil drilling, and the total production of it exceeds 30,000 tons a year. It gets its name from the bacterium that produces it, Xanthomonas campestris, which uses it for adhesion to plant cells. Since this is the Biophysical Society (and not a cooking blog) I can add that this hydrocolloid is built from pentasaccharides, with a typical molecule having ~ 7,000 pentamers. It is tasteless, and has amazing thickening properties, leading to sauces with a texture that cannot be achieved with other thickeners, such as flour or corn starch. I might also add that biopolymers of all sorts will be the focus of the Thematic Meeting that we are holding in Rio de Janeiro at the end of October, “Polymers and Self-Assembly: From Biology to Nanomaterials.”

The other night I grilled six boneless chicken thighs, tossed with fresh rosemary, salt, pepper, and olive oil. While they were grilling I sautéed a whole diced onion in olive oil. I then added 200 ml of chicken stock (I typically make ~ 30 liters of this at a time, so it is always available in my freezer). This was seasoned with salt and pepper and reduced over very high heat to perhaps half the original volume. I then added ~ 30 ml of cream (two tablespoons), about the same quantity of a good Dijon mustard, and a small pinch of xanthum gum (perhaps 150 mg, but who has a precision balance in the kitchen?). I pureed this with an immersion blender, necessary to fully dissolve the xanthum gum. If you do not have an immersion blender a regular blender would be fine.  The chicken thighs and the sauce were kept warm while I finished the kale. I had previously blanched in boiling salted water perhaps two liters of fresh kale leaves. These were only boiled for about a minute, and then rinsed in very cold water until cool. They were then squeezed quite thoroughly in a colander to remove all water. To finish, the kale was sautéed in olive oil to which some chopped garlic and jalapeños had been added.

The presentation was simple: spread the kale leaves on a warmed plate, place one or two (depending upon the size of the thighs, the number of other courses, and the appetite of the recipient) chicken thighs on top, and then pour the sauce over the chicken. A sprig of fresh rosemary on top of the thigh is all this now needs. Bon appétit!

-Edward Egelman