Pre-Meeting Introduction: Single-Cell biophysics: measurement, modulation and modelling

Hi everyone. I’m Michael and I’ll be one of three people covering the meeting. I’m a single cell biophysicist from London, currently working in Dylan Owen’s lab at King’s College (KCL).

The lab and I work on ways to quantitate biological phenomena on the nanoscale, particularly molecular clustering. I personally have been looking into the nanoscale goings on of integrin adhesions in migrating T cells. It’s a fun system to work in, because the adhesions are so much smaller than what are found in most other cells. What I’ve found appears to be a specific system of membrane nanoclustering, that is altered to tune the speed of a migrating T cell.

We think that this might be pretty important, especially considering a speed change experienced by cells with a mutation in PTPN22 – an integrin signal modulating phosphatase that is associated with autoimmune disease predisposition.

As well as this, we are very interesting in the dynamics and ultrastructure of the actin cytoskeleton, and mechanisms of membrane protein nanoclustering – how this might relate to the picket-fence model, lipid rafts and scaffold type protein regulation.

Some very relevant topics await: on the first day I’m very interested to hear Suliana Manley for live super resolution microscopy and Pakorn Kanchanawong on his cadherin adhesome work. I hope you are too!

As light rain continues to fall over Taipei, I think I can hear some kind of horn (of Gondor?), which I’m going to take it as my signal to start exploring the city. I always enjoy the sounds you get in such a place – city sounds are my favourite as they are so complex and multi-layered – familiar somehow and yet so different to what I’m used to in London.

So, with that, I’ll see you all tomorrow, for an engaging first day full of imaging techniques, mechanobiology, nanotechnology and the cell cycle!

Michael Shannon (Dylan Owen lab, KCL)


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s